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Density-functional theory for an electrolyte confined by thin charged walls
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Results are reported for the primitive model of an electrolyte and for the solvent primitive model of an
electrolyte for the case where these fluids are confined by two charged walls. When the walls are thin, the
confined electrolyte inside the walls is affected by the charge on both the inside and the outside of the walls.
In the case of the primitive model~PM!, this system has been studied previously using a singlet integral
equation. Our density-functional~DF! study is more general because the fluids inside and outside the walls are
constrained to have the same chemical potential and because solvent effects are considered, albeit at a crude
level. The singlet integral equation does not consider the chemical potential constraint explicitly. We find that
for the low density PM, the DF and integral equation approaches yield, except for a very narrow pore, very
similar results. When solvent molecules are considered, the profiles become oscillatory. The co-ion density
profiles are particularily interesting because the repulsive electrostatic potential and the effect of the increased
pressure in ‘‘pushing’’ the co-ions against the wall compete.

PACS number~s!: 61.20.2p, 68.10.2m, 68.15.1e, 82.45.1z
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I. INTRODUCTION

Lozada-Cassouet al. @1–6# have made extensive and im
portant studies of fluids confined by two thin walls. Th
find that when the walls are thin the fluid inside the walls c
be affected significantly by the fluid outside. In particular,
is found that when the fluid is an electrolyte, local char
neutrality between the fluid inside and the inside surface
the wall and between the fluid outside and the outside
face of the wall is not satisfied, except when the two wa
have the same electrostatic potential. Of course, ove
charge neutrality is always satisfied.

The numerical results of Lozada-Cassou were obtai
from the singlet hypernetted chain integral equation for
density profile with the bulk direct correlation functio
evaluated from the mean spherical approximation~MSA!.
Lozada-Cassou calls this theory the three-point extension
cause the coordinates of three particles~two walls and one
fluid particle! are employed. We refer to this approach as
singlet theory because the position of only one fluid parti
is taken into account. Several studies@7# have shown that for
confined~uncharged! fluids density-functional~DF! theory is
an attractive alternative. Density-functional theory yields
sults that are more accurate than those of the singlet th
and are comparable with those of a pair level integral eq
tion approach~a four-point extension in Lozada-Cassou
nomenclature!, but is considerably easier to implement.

In our earlier study, we considered only the inside o
slit. This is fine for uncharged systems. However, when C
lomb forces are present, both the inside and outside mus
considered. In the present geometry, with a wall with both
inside and an outside, DF theory has the advantage tha
fluids inside and outside the pore walls are constrained
PRE 611063-651X/2000/61~4!/3896~8!/$15.00
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have the same chemical potential and this chemical pote
is equal to that of the bulk fluid. In the singlet theory, th
fluid inside and outside the pore walls are considered to b
equilibrium only through the fact that the same bulk dire
correlation function is employed for the integral equatio
for the fluid inside and outside the pore. Of course, the fl
inside the slit ‘‘knows’’ that there is a fluid outside the sli
However, the chemical potential does not enter the form
ism explicitly; consequently the fluids inside the pore a
outside of it may not, in general, be in chemical equilibriu
This may be only a pedantic problem since in the sing
theory the fluid inside and outside the slit is treated as
same fluid ‘‘wrapped’’ around the slit walls. In any cas
there is a further problem. The properties of the bulk flu
are defined by the usual Ornstein-Zernike~OZ! equations for
the bulk fluid that is the source of the direct correlation fun
tion used in the singlet formalism. There is nothing in t
formalism to guarantee that the fluid inside or outside
pore has the same chemical potential as the bulk fluid, e
cially when the bulk OZ equation is solved with a differe
closure than the singlet equation. In our comparison of
theory, the results of the singlet theory, and simulations,
singlet theory gives quite good results. It could be argu
that this indicates that the singlet theory is satisfying
equality of chemical potentials. However, the singlet resu
are available only for a low density system where there
no explicit solvent molecules. Our studies of uncharged h
spheres show that the singlet theory is less satisfactor
higher densities, possibly indicative of a problem with t
chemical potentials. Of course, in the absence of any
proximations the chemical potential would be consta
However, after approximations have been introduced
may not be the case. In contrast, DF theory is formulated
terms of the grand potential and constant chemical poten
3896 © 2000 The American Physical Society
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PRE 61 3897DENSITY-FUNCTIONAL THEORY FOR AN . . .
is preserved even after approximations are introduced. At
very least, this is a conceptual advantage.

In view of the advantages of DF theory, we feel that it
worthwhile applying this approach to an electrolyte form
by two thin walls. In addition, we consider solvent effec
that have not been considered explicitly in Lozada-Casso
studies. Lozada-Cassou used theprimitive model~PM! of an
electrolyte, where the solvent is modelled as a continuum
dielectric constante. A sophisticated model of water, i.e.,
model of a simple solvent without hydrogen bonding b
with a dipole moment, may be also implemented in t
framework of a DF approach@8#. However, in this work we
consider the most primitive model of a solvent. We use
solvent primitive model~SPM!, where the ions are charge
hard spheres whose Coulomb interactions are attenuatede
and where the molecular nature of the solvent is represe
by a fluid of hard spheres.

Although quite crude, this model has been used with s
cess@9,10# in other applications. Admittedly, hard spher
are a poor representation of a solvent but they do recog
the fact that the solvent is composed of molecules that
cupy space~they reduce the ‘‘free volume’’ to use van de
Waals’ expression!. As a result, the SPM is an advance ov
the PM of an electrolyte, where the ions are represented
charged hard spheres and the solvent manifests itself
through the presence ofe.

Here results are reported for both the primitive and s
vent primitive models. For simplicity, we assume that t
charged hard spheres~the ions! and the uncharged har
spheres~the solvent molecules! have the same diameterd.
This is a purely technical restriction. It can be relaxed a
more general studies will be considered in subsequent w

II. THEORY

We consider a pair of walls of thicknessD centered atz
50 and separated by a distanceL. The linear distance per
pendicular to the walls is denoted byz. There is symmetry
about z50. The inner and outer surfaces of each wall a
given the charge densitiess1 ands2 , respectively. The cor-
responding electrostatic potentials areV1 andV2 . The inter-
action between the ions is

ui j ~r !5H `, r ,d,

qiqj

er
, r .d ,

~1!

where qi is the charge of an ion of speciesi and r is the
separation of the ions. The interaction between the solv
molecules and between the solvent molecules and the io
a hard sphere interaction, i.e., Eq.~1! with qk50. The quan-
tity e is the dielectric constant, which we assume is unifo
throughout the entire system and the same for all distan

The interaction between the ions of speciesi and the wall
is given by

ui~z!5v i~z!1wi~z!, ~2!

wherewi(z) andv i(z) are the electrostatic and the nonele
trostatic van der Waals parts of the external potential, resp
tively. The van der Waals interaction potential is
e
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v i~z!5H `
L2D2d

2
,uzu,

L1D1d

2
,

0 otherwise.

~3!

The electrostatic interaction between an ion and the sur
of a wall ~or sheet of charge! is given by

wi~z!5
4psqi

e
z8, ~4!

wheres is the uniform charge per unit area, which equalss1
or s2 , as appropriate, andz8 is the distance from the surfac
@i.e., the planes atuzu5(L6D)/2#. In the SPM, there is no
electrostatic interaction between the solvent molecules
the wall. Formally, the solvent molecules are uncharg
ions; thus, we can think of the system as a three compon
system with one species having the chargeqs50.

The electrostatic potentialF(z) is determined by Pois-
son’s equation

¹2F~z!52
4p

e (
i

qir igi~z!, ~5!

wherer i(z)5r igi(z) is the density profile of an ion of spe
cies i andr i is the density of a bulk particle of speciesi.

Integrating, we obtain forz.(L1D)/2,

dF~z!

dz
5

4p

e (
j

qjr jE
z

`

gj~ t !dt ~6!

and

F~z!52
4p

e (
j

qjr jE
z

`

~ t2z!gj~ t !dt. ~7!

In obtaining Eqs.~5! and ~6!, the boundary conditions tha
F(z) and its derivative vanish atz5` has been used.

For 0,z,(L2D)/2, integrating Poisson’s equatio
yields

dF~z!

dz
52

4p

e (
j

qjr jE
0

z

gj~ t !dt. ~8!

Because of the symmetry aboutz50, the boundary condition
dF(z)/dz50 atz50 has been used. One further integrati
yields the electrostatic potential,

F~z!52
4p

e (
j

qjr jF E
0

z

~ t2z!gj~ t !dt

2E
0

~L2D!/2S t2
L2D

2 Dgj~ t !dtG1V1 , ~9!

where the boundary condition

V15FS L2D

2 D ~10!
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3898 PRE 61HENDERSON, BRYK, SOKOŁOWSKI, AND WASAN
has been used. The potentialV2 is given by

V25FS L1D

2 D . ~11!

Inside the wall, there is no charge. Hence, for (L2D)/2,z
,(L1D)/2,

F~z!5
V11V2

2
1

V12V2

2 S L22z

D D . ~12!

The charge on each surface of the wall can be obtai
from Gauss’s law.

Thus,

s152S e

4p D V22V1

D
2(

j
qjr jE

0

~L2D!/2
gj~ t !dt ~13!

and

s25S e

4p D V22V1

D
2(

j
qjr jE

~L1D!/2

`

gj~ t !dt. ~14!

Overall charge neutrality

s11s252(
j

qjr jE
0

`

gj~ t !dt ~15!

is satisfied. As emphasized by Lozada-Cassou, the ch
in the electrolyte in the regions 0,z,(L2D)/2 and
(L1D)/2,z,` do not equals1 ands2 unlessV15V2 .

For simplicity, we assume that the salt in the electrolyte
symmetric; thus,q5uqi u and r15r2 . The total density of
the system is

r5rs1r11r2 , ~16!

wherers is the density of the solvent molecules.
Our DF calculations were performed using the theory

Rosenfeld@11# as modified and simplified by Kierlik and
Rosinberg@12#. We write only the final density profile equa
tion; the details of this DF theory can be found in their orig
nal papers,

2kT ln@r i~z!/r ib#5v i~z!1F dFHS
ex

dr i~r !
2m i ,HS

ex G
1qi@F~z!2Fbulk#

2kT(
j
E Dci j ~ ur2r 8u!Dr j~z8!dr 8,

~17!

where FHS is the excess free energy functional of a ha
sphere system of densityr, m i

ex is the excess~apart from
ideal contribution! parts of the chemical potential,Dr i(r )
5r i(r )2r i and Dci j (r ) are the short-ranged parts of th
direct correlation functions resulting from Coulombic inte
actions. The most widely used expression to evaluate th
functions is the MSA result, which is of reasonable accura
and yields the following analytical expressions@13#:
d

ge

s

f

se
y

kTci j ~r !5H 2
qiqj

e F2A

d
2S A

d D 2

r 2
1

r G r,d

0 r.d.

~18!

In the above A5x22@x21x2x(112x)1/2#, and x
5(4pbd2/e)S ir ibqi .

The main deficiencies of the MSA theory are well know
@14#. In order to improve the theory, one should use a m
elaborate theory, for example, the generalized MSA
GMSA theory@15#, or the hypernetted chain~HNC! theory
@16#. However, similarly to other authors, here we shall u
only the MSA theory as a first approximation.

For the hard sphere part, i.e., forFHS
ex , we adopt one of the

most accurate nonlocal functionals, i.e., the Kierli
Rosinberg version of the DF theory@12#. Because this theory
is quite standard, we refer the reader to their papers.

Our numerical procedure involves the numerical solut
of Eq. ~17!, together with the equations definingF(r ), using
a standard Picard iteration method. The grid size that
employed was 0.025d. When the norm of the difference vec
tor between thekth and (k11)th iterates of thegi(r ) was
less than 1027, the iteration was deemed to have converg

It is convenient to introduce reduced or dimensionle
units in our calculations. The reduced temperature is

T* 5
ked

q2 T, ~19!

wherek is the Boltzmann constant. The reduced charge d
sities on the surfaces of the wall are

s i* 5
s id

q
, ~20!

and the reduced potential is

F* ~z!5bqF~z!, ~21!

whereb51/kT. The value forT* that we use is the value
chosen by Torrie and Valleau@17#,

1/T* 51.6808, ~22!

or, equivalently, a reduced charge of

q* 5
1

AT*
5S bq2

ed D 1/2

51.296. ~23!

This corresponds to an aqueous solution at room tempera
with a core diameterd54.25 Å.

III. RESULTS AND DISCUSSION

In Fig. 1 we show the results for an 1:1 PM electroly
that has been studied by Lozada-Cassou, cf. Fig. 6 of R
@5#. The reduced charge density of each plate iss*
50.013 529 11, the reduced plate width isD/d51. The re-
duced concentration of anions and cations isr id

3

50.000 462 4~0.01 M! and 1/T* 51.6808. Figure 1~a! cor-
responds to Fig. 5~a! from Ref. @5#. The solid and dashed
lines give the results for the counterions and co-ions, resp
tively, obtained from DF theory. For Fig. 1, the HNC/MS
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PRE 61 3899DENSITY-FUNCTIONAL THEORY FOR AN . . .
FIG. 1. Density profiles for ions in a 1:1 PM at a concentrati
of 0.1 M. The charge density on the wall iss1* 5s1*
50.013 529 11.~a! and ~b! The solid and dashed lines give th
counterion and co-ion profiles, respectively.~a! L550.5d; ~b! we
have two sets of results forL55.5d and forL515.5d. ~c! L52d
and only the counterion profiles are plotted.~c! The solid and
dashed curves give the DF and HNC/MSA results, respectiv
The wall widthD equalsd.
profiles, obtained by Lozada-Cassou, are indistinguisha
from those resulting from DF theory; therefore, th
HNC/MSA results are not plotted here. The situation in F
1~b! is similar. Lozada-Cassou has plotted the curve only
L55.5; we have added the results for a wider pore. Note
Lozada-Cassou’s definition oft ~the pore width! is shifted by
D/2 with respect toL; L5t1D/2. Thus, there are almost n
differences between the HNC/MSA and DF approaches
the case of Figs. 1~a! and 1~b!. However, for a narrower
pore, shown in Fig. 1~c! we see some differences. Here, on
the profiles of the counterions are shown. The solid lines
dashed lines give the DF and HNC/MSA results, resp
tively. The differences are more pronounced inside the po
however, they are still small. However, the fact that the co
centration is quite low is to be kept in mind. From our ca
culations for hard spheres in a pore, we know that DF the
is more accurate than the HNC/MSA approach.

To summarize the results in Fig. 1, whenL is sufficiently
large, the profiles inside and outside are almost symme
@Fig. 1~a!# and the ‘‘local electoneutrality condition’’ is ‘‘al-
most’’ satisfied. The profile inside the pore of widthL
515.5 @Fig. 1~b!# is still ‘‘almost’’ the same as the profile
outside; indeed, the profiles for this pore are almost ident
as those forL550.5 @Fig. 1~a!#. DecreasingL results in in-
creasing values of the contact values of the counterions
files with the profile of counterions inside the pore bei
higher than the counterion profile outside the pore. Only
a very narrow pore do we observe more pronounced dif
ences between the HNC/MSA and DF profiles@Fig. 1~c!#.

In Fig. 2, we show plots for the total charges1* 1s2* of
the plates and the charge on the inner plate ands1 as func-
tions of the potentials of the inner and the outer plates for
0.01 M PM for the geometry of Fig. 1~c!. The local electro-
neutrality condition is satisfied along the diagonalV15V2 .

The interaction force between two pore walls, as defin
by Lozada-Cassou, is

f ~L !/kT5(
i

H r i~z5L2D2d/2!2
2p

e F E
d/2

L

dz( r i~z!G2

2( r i~z5L1D1d/2!

1
2p

e F E
L1d/2

`

dz( r i~z!G2J ~24!y.

FIG. 2. A plot of the total charges1* 1s2* on the plates and the
charge on the inner plates1* vs the potentials of the inner and th
outer plates for the PM. The quantitiesV8 areV* /q* . The reduced
density of the anions and cations is 0.000 462 4~0.01 M!, L52d,
andD5d.
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3900 PRE 61HENDERSON, BRYK, SOKOŁOWSKI, AND WASAN
for a 2:2 electrolyte~PM!. The simulations of Valleauet al.
@18# were performed for ions in a slit with a very wide wa
i.e., there is no ‘‘outer world,’’ and no outer solvent. Thus,
our calculations, we used a rather wide wall,D520d; the
charges weres1* 5s2* 50.306 666 and the concentration w
0.971 M „the reduced densities of the anions and cati
werer id

350.044 8949, cf. Fig. 8~a!… of Ref. @5#. The points
are the Monte Carlo~MC! simulation and the solid line give
the DF results; DF theory gives very satisfactory results.
have also made calculations for a width ofD510d and
found that the 10d and 20d DF results are virtually identical
Both thicknesses correspond to an infinitely thick wall. O
viously, if D is large enough~infinite!, the local electoneu-
trality condition is always satisfied, independently of the v
ues of the charges~or potentials! on both plates forming the
wall. In such a case, the third and fourth terms in the l
equation are just those for an infinitely wide pore, or for
single wall. For the states considered, 10d and 20d are infi-
nite. Note that Lozada-Cassou’s discussion@5# about the
‘‘artificial imposition of the local electroneutrality condi
tion’’ in the simulations by Valleauet al. and also in some
earlier DF calculations does not apply to those studies
cause only a single slit, without an outer solution was us
Their model corresponds to the model of Lozada-Cassou
model used here, with an infinitely thick wall and local ne
trality always applies. Returning to Fig. 3, we stress the go
agreement with the simulation studies.

We present some results for a system for whichV15V2
~where local electroneutrality applies! in Fig. 4. Three values
of the potentialV* 5q* ~curves labeled 1! V* 53q* ~curves
labeled 2! andV* 55q* ~curves labeled 3!. Figures 4~a! and
4~b! give the co-ion and counterion profiles, respective
The geometry is the same as that for Fig. 1~c!. The reduced
densities for the co- and counterions are equal to 0.052~i.e.,

FIG. 3. The force between two walls of a slitlike pore vs t
pore width. The points give the MC results and the curve gives
DF results. In this calculationD520d, the charge density iss1*
5s2* 50.306 666, and the ionic densities arer id

350.044 894 9~a
concentration of 0.971 M!.
s

e

-

-

t

e-
d.
he
-
d

.

e

FIG. 4. DF calculations for the PM of the coion~a! and coun-
terion profiles~b! and the adsorption isotherms~c!. The geometry is
L52 andD5d. ~a! and ~b! The ionic reduced densities are 0.05
for each species. Local electoneutrality conditionsV15V2 have
been used. For curves 1,2,3, respectively, the values of the pote
are V* 5q* , 3q* , and 5q* . The geometry is the same as in Fi
1~c!. For easier viewing~c! the co-ion adsorption isotherm 2 ha
been multiplied by 2 and the co-ion adsorption isotherm 3 has b
multiplied by 5.
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PRE 61 3901DENSITY-FUNCTIONAL THEORY FOR AN . . .
the concentration is slightly higher than 1 M!. Figure 4~c!
shows the adsorption isothermsG i* 5G id

2, G i5*dzr i(z). In
Fig. 4~c! the solid and dashed lines, respectively, give
coion and counterion isotherms. The numbers 1, 2, an
refer toV* /q* 51, 3, and 5. Note that the isotherms 2 and
for the co-ion~solid lines! have been multiplied by 2 and 5
respectively, for easier viewing. An increase of the poten
leads to an increase of the adsorption of the counterions
contrast, the adsorption of co-ions decreases with increa
potential. The structure of profiles of the co-ions and co
terions is rather featureless and is not shown; only one p
is seen at the two walls. Here the ion concentration is m
higher than that for Fig. 1~c!; however, the differences be
tween the distribution functions of the counterions inside a
outside are smaller than at low concentrations. This, pres
ably, is due to the fact that the screening length for the e
trostatic interactions decreases as the concentration
creases. As a result, the ‘‘effective’’ thickness of the w
increases with increasing concentration and, for a fix
thickness, the electrolytes inside and outside the pore ten
become independent of each other.

We now proceed to the results for ions plus the primit
solvent. In Fig. 5 we show the counterion, Fig. 5~a!, and
solvent, Fig. 5~b!, profiles for the constant charge conditio
The geometry, charges, and ionic densities are the same
Fig. 1~c! i.e., the reduced charge density of each plate
s* 50.013 529 11, the reduced plate separation isD/d51
and L52d. The reduced concentration of the anions a
cations isr id

350.000 462 4~0.01 M! and 1/T* 51.6808,L
52d. The calculations have been carried out at three
duced solvent densities 0.1, 0.5, and 0.7. In addition,
have also displayed here the curve for zero solvent con
tration@taken from Fig. 1~c!#. With an increase of the solven
density we observe the development of a layered structur
the ionic density profiles. At zero and at low solvent den
ties, the density profiles exhibit a long-ranged decay, du
the long inverse Debye parameter at low concentrations;
presence of the solvent ‘‘decorates’’ this decay. At high s
vent densities, the layered structure inside the pore deve
with a second local density peak at the pore center. At
highest solvent density, there are several layers outside
pore. This increase in the layered structure is quite usua
liquid-state theory.

Figures 6 and 7 show further SPM results. In Figs. 6 a
7, respectively, density profiles and adsorption isotherms
plotted. The geometry of the system is the same as in F
1~c! and 5; however, in Fig. 7 the ionic densities are mu
higher, r id

350.052 ~a concentration of the order of 1 M!.
The calculations were performed under constant poten
conditions~i.e., the local electroneutrality condition is sati
fied!. We have set the potentialsV1 and V2 to be V1* 5V2*
53q* . Four solvent densities have been considered; the
bels 1, 2, 3, and 4 refer to different solvent densities, see
caption. Figures 6~a!–6~c! show the counterion, co-ion, an
solvent profiles, respectively. At low solvent densities, t
co-ion profiles show a depletion at the walls, whereas
higher solvent densities, this depletion converts into a ma
mum. Increasing the solvent density ‘‘pushes’’ the ions a
solvent molecules against the wall. This is most obvious
the co-ion profiles because the potential on the wall is ac
in the opposite direction, pushing the co-ions away from
e
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wall. At low densities, the electrostatic effect dominat
whereas at higher densities, the pressure effect becomes
nificant.

Figure 7 shows some adsorption isotherms plotted
functions of the ionic densities. The adsorption isotherms
solvent, Fig. 7~c!, are plotted vs ionic densities. Increasin
the ionic densities increases the adsorption of the ions. T
is to be expected; if there are more ions, more will be a
sorbed. Increasing the ionic densities has little effect on
solvent adsorptions because the ionic density is small c
pared to the solvent density. The adsorption of the solv
molecules and of both the counterions and co-ions increa
with increases with increasing solvent density because of
increased ‘‘pushing’’ with increased density.

IV. SUMMARY

We have applied DFT to investigate an electrolyte in
pore formed by charged walls of varying thickness with t

FIG. 5. Counterion~a! and solvent~b! density profiles obtained
using the SPM. The calculations are for a reduced charge densi
each plate ofs* 50.013 529 11, the reduced plate separation isD
5d; L52d. The reduced concentration of anions and cations
r id

350.000 462 4 ~0.01 M! and 1/T* 51.6808. The solvent re-
duced densities are 0, 0.1, 0.5, and 0.7;~a! this code is displayed.
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3902 PRE 61HENDERSON, BRYK, SOKOŁOWSKI, AND WASAN
fluid inside and outside the wall being in equilibrium. W
have studied the profiles and adsorption isotherms both f
continuum solvent and a molecular solvent. For the cas
the continuum solvent, the electrolyte is a low density s
tem and the DFT results are very similar to those of
integral theory of Lozada-Cassou. Both the integral equa
and DFT results are in gratifyingly good agreement with
simulation results.

FIG. 6. SPM density profiles of the co-ions~a!, counterions~b!,
and the solvent molecules~c!. The geometry of the system is th
same as in Figs. 1~c! and 5. The calculations performed with co
stant potential boundary conditionsV* 53q* . The ionic densities
arer id

350.052. The lines labeled 1, 2, 3, and 4 correspond to b
reduced solvent densities equal to 0.7, 0.6, 0.4, and 0.1, res
tively.
a
of
-
e
n

e

When a molecular model of the solvent is introduced,
density of the electrolyte can be large. Under such con
tions, we expect that DFT will be much more accurate th
the singlet level integral equations. We have already s
this for uncharged hard spheres in a pore@19#. Of course, as
was done in Ref.@19#, good results can be obtained by usin
a pair level integral equation but at a considerable cos
computational complexity. Previous comparison of DF
with simulations for the case of an infinitely thick charge

k
ec-

FIG. 7. Adsorption isotherms of co-ions~a!, counterions~b!,
and solvent molecules~c! for the system with the same geomet
and electrostatic potential as in Fig. 6. The isotherms are plotte
ionic densityr id

3, i 51 or 2. The different lines refer to differen
bulk solvent densities; the numbers 1, 2, 3, and 4 have the s
meaning as in Fig. 6.
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wall have shown DFT to be reliable. We have every rea
to expect this to be the case for thinner walls.
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