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Density-functional theory for an electrolyte confined by thin charged walls
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Results are reported for the primitive model of an electrolyte and for the solvent primitive model of an
electrolyte for the case where these fluids are confined by two charged walls. When the walls are thin, the
confined electrolyte inside the walls is affected by the charge on both the inside and the outside of the walls.
In the case of the primitive modé€PM), this system has been studied previously using a singlet integral
equation. Our density-function@DF) study is more general because the fluids inside and outside the walls are
constrained to have the same chemical potential and because solvent effects are considered, albeit at a crude
level. The singlet integral equation does not consider the chemical potential constraint explicitly. We find that
for the low density PM, the DF and integral equation approaches yield, except for a very narrow pore, very
similar results. When solvent molecules are considered, the profiles become oscillatory. The co-ion density
profiles are particularily interesting because the repulsive electrostatic potential and the effect of the increased
pressure in “pushing” the co-ions against the wall compete.

PACS numbdis): 61.20—p, 68.10-m, 68.15:+¢, 82.45+z

[. INTRODUCTION have the same chemical potential and this chemical potential
is equal to that of the bulk fluid. In the singlet theory, the
Lozada-Cassoet al.[1-6] have made extensive and im- fluid inside and outside the pore walls are considered to be in

find that when the walls are thin the fluid inside the walls cancOrrélation function is employed for the integral equations

P : : ; .. for the fluid inside and outside the pore. Of course, the fluid
iefigﬁgt?ga?g\gl\?r:féza?;g ﬁziéhifgjr',de?zéﬂgﬁ;tén I% acgllcglhaar;g;teinside the slit “knows” that the_re is a fluid outside the slit.

. A L owever, the chemical potential does not enter the formal-
neutrality between the fluid |n3|de apd the inside surface oEm explicitly; consequently the fluids inside the pore and
the wall and between the fluid outside and the outside surgside of it may not, in general, be in chemical equilibrium.
face of the wall is not satisfied, except when the two wallsthis may be only a pedantic problem since in the singlet
have the same electrostatic potential. Of course, overatheory the fluid inside and outside the slit is treated as the
charge neutrality is always satisfied. same fluid “wrapped” around the slit walls. In any case,

The numerical results of Lozada-Cassou were obtainethere is a further problem. The properties of the bulk fluid
from the singlet hypernetted chain integral equation for theare defined by the usual Ornstein-Zerni{k&) equations for
density profile with the bulk direct correlation function the bulk fluid that is the source of the direct correlation func-
evaluated from the mean spherical approximatitiSA). tion used in the singlet formalism. There is nothing in the
Lozada-Cassou calls this theory the three-point extension béermalism to guarantee that the fluid inside or outside the
cause the coordinates of three particiaso walls and one pore has the same chemical potential as the bulk fluid, espe-
fluid particle) are employed. We refer to this approach as thecially when the bulk OZ equation is solved with a different
singlet theory because the position of only one fluid particleclosure than the singlet equation. In our comparison of DF
is taken into account. Several studj&$ have shown that for theory, the results of the singlet theory, and simulations, the
confined(unchargeglfluids density-functionalDF) theory is  singlet theory gives quite good results. It could be argued
an attractive alternative. Density-functional theory yields re-that this indicates that the singlet theory is satisfying the
sults that are more accurate than those of the singlet theomgquality of chemical potentials. However, the singlet results
and are comparable with those of a pair level integral equaare available only for a low density system where there are
tion approach(a four-point extension in Lozada-Cassou’s no explicit solvent molecules. Our studies of uncharged hard
nomenclaturg but is considerably easier to implement. spheres show that the singlet theory is less satisfactory at

In our earlier study, we considered only the inside of ahigher densities, possibly indicative of a problem with the
slit. This is fine for uncharged systems. However, when Couchemical potentials. Of course, in the absence of any ap-
lomb forces are present, both the inside and outside must @oximations the chemical potential would be constant.
considered. In the present geometry, with a wall with both arHowever, after approximations have been introduced this
inside and an outside, DF theory has the advantage that threay not be the case. In contrast, DF theory is formulated in
fluids inside and outside the pore walls are constrained téerms of the grand potential and constant chemical potential

1063-651X/2000/6)/38968)/$15.00 PRE 61 3896 © 2000 The American Physical Society



PRE 61 DENSITY-FUNCTIONAL THEORY FOR AN . .. 3897

is preserved even after approximations are introduced. At the L—A—d L+A+d
very least, this is a conceptual advantage. )= 5 |z < 5

In view of the advantages of DF theory, we feel that it is vi(2)= €
worthwhile applying this approach to an electrolyte formed 0 otherwise.

by two thin walls. In addition, we consider solvent effects

that have not been considered explicitly in Lozada-Cassou'$he electrostatic interaction between an ion and the surface

studies. Lozada-Cassou used fhimnitive model(PM) of an ~ of a wall (or sheet of chargeis given by

electrolyte, where the solvent is modelled as a continuum of

dielectric constant. A sophisticated model of water, i.e., a 4moq;

model of a simple solvent without hydrogen bonding but wi(2)=

with a dipole moment, may be also implemented in the

framework of a DF approacf8]. However, in this work we \hereq is the uniform charge per unit area, which equajs

consider the most pl’lmltlve model of a solvent. We use thQ)r oy, as appropriate, ard is the distance from the surface

solvent primitive mode{SPM), where the ions are charged [je. the planes diz|=(L+A)/2]. In the SPM, there is no

hard spheres whose Coulomb interactions are attenuated bye|ectrostatic interaction between the solvent molecules and

and where the molecular nature of the solvent is representgfle wall. Formally, the solvent molecules are uncharged

by a fluid of hard spheres. _ ions; thus, we can think of the system as a three component
Although quite crude, this model has been used with sucsystem with one species having the chagge O.

cess[9,10] in other applications. Admittedly, hard spheres " The glectrostatic potentiab(z) is determined by Pois-

are a poor representation of a solvent but they do recognizgyy's equation

the fact that the solvent is composed of molecules that oc-

cupy spacegthey reduce the “free volume” to use van der Ao

Waals’ expression As a result, the SPM is an advance over V2D (2)=—— 2, qipigi(2), (5

the PM of an electrolyte, where the ions are represented by € i

charged hard spheres and the solvent manifests itself only

through the presence ef wherep;(z) = p;gi(2) is the density profile of an ion of spe-
Here results are reported for both the primitive and sol-ciesi andp; is the density of a bulk particle of species

vent primitive models. For simplicity, we assume that the Integrating, we obtain for> (L +A)/2,

charged hard sphereghe iong and the uncharged hard

z', 4

spheres(the solvent moleculéshave the same diametelr do(z) 4772 » q 5
This is a purely technical restriction. It can be relaxed and dz € j a;pj , gj(Hdt ©®)
more general studies will be considered in subsequent work.
and
Il. THEORY
We consider a pair of walls of thicknedscentered ar d(z)=— 4_772 qipjfw(t—z)gj(t)dt. -
=0 and separated by a distanceThe linear distance per- € z

pendicular to the walls is denoted lay There is symmetry
aboutz=0. The inner and outer surfaces of each wall areln obtaining Egs.(5) and (6), the boundary conditions that
given the charge densities, ando,, respectively. The cor- &(z) and its derivative vanish &=« has been used.

responding electrostatic potentials &gandV,. The inter- For 0<z<(L—A)/2, integrating Poisson’s equation
action between the ions is yields
*, r<d, dd(z) 4w z
—-2T3 apy [ o0t ®
uij(r)= Qi_?j" r>d. 1) dz e T V)oY
€

Because of the symmetry abaut 0, the boundary condition
where q; is the charge of an ion of speciesandr is the d®(z)/dz=0 atz=0 has been used. One further integration
separation of the ions. The interaction between the solventields the electrostatic potential,
molecules and between the solvent molecules and the ions is

a hard sphere interaction, i.e., E@) with q,=0. The quan- A z
tity € is the dielectric constant, which we assume is uniform P(z)=- TE gjp; fo(t—z)gj(t)dt
throughout the entire system and the same for all distances. .
The interaction between the ions of spediesd the wall (L—A)2 L—A
is given by - Jo (t— T)Q;(t)dt +Vi, 9

ui(z)=vi(z) +w;(2), 2 .

(D=vi@)+wi(2) @ where the boundary condition

wherew;(z) andv;(z) are the electrostatic and the nonelec-

trostatic van der Waals parts of the external potential, respec- V.= <I>( L— A) (10)
1=

tively. The van der Waals interaction potential is 2



3898 HENDERSON, BRYK, SOKOLOWSKI, AND WASAN PRE 61

has been used. The potenti4} is given by qiq;[ 2A (A>2 1} d
—— =] = <
L+A kTc(r)= e[d \d r (18
Vo=@ —— 11 0 r>d.
— v 2[y2 _ 1/2
Inside the wall, there is no charge. Hence, for-(A)/2<z N the Zabove A=X"TXE4Hx=x(1+2x)™], and X
<(L+A)/2 =(4mpd/€)Zipipq; -
' The main deficiencies of the MSA theory are well known
Vi+V, V-V, [L-2z [14]. In order to improve the theory, one should use a more
d(2)= 5 + 5 ( A ) (120  elaborate theory, for example, the generalized MSA or

GMSA theory[15], or the hypernetted chaifHNC) theory
The charge on each surface of the wall can be obtaineb-6l However, similarly to other authors, here we shall use
from Gauss's law. only the MSA theory as a first approximation.
Thus, For the hard sphere part, i.e., 15, we adopt one of the
most accurate nonlocal functionals, i.e., the Kierlik-
€\ V,—V, (L-A)2 Rosinberg version of the DF theo%2]. Because this theory
o1=— (E)T_g ijjf gj(t)dt (13) s quite standard, we refer the reader to their papers.
Our numerical procedure involves the numerical solution
of Eq. (17), together with the equations definidy(r), using
a standard Picard iteration method. The grid size that we
V,—V, % employed was 0.02b When the norm of the difference vec-
E) A -2 jp; gj(t)dt. (14  tor between theth and k+ 1)th iterates of they;(r) was
! (L+a)z less than 107, the iteration was deemed to have converged.
It is convenient to introduce reduced or dimensionless
units in our calculations. The reduced temperature is

0'1+<72:—; qujfo g;(t)dt (15 T+ ked 19

0

and

(O

Overall charge neutrality

=—T,

q

is satisfied. As emphasized by Lozada-Cassou, the charggerek is the Boltzmann constant. The reduced charge den-
in the electrolyte in the regions 0z<(L—A)/2 and gjties on the surfaces of the wall are

(L+A)/2<z<x do not equalr; and o, unlessV,;=V,.

For simplicity, we assume that the salt in the electrolyte is , oid
symmetric; thusq=|q;| and p;=p,. The total density of =g (20
the system is

and the reduced potential is
p=pstpitpa2, (16)
®*(2)=BqP(2), (21

wherepg is the density of the solvent molecules. ]

Our DF calculations were performed using the theory ofvhere 3=1KkT. The value forT* that we use is the value
Rosenfeld[11] as modified and simplified by Kierlik and chosen by Torrie and Valleg7],
Rosinberd 12]. We write only the final density profile equa-

* —
tion; the details of this DF theory can be found in their origi- L/T* =1.6808, (22)
nal papers, or, equivalently, a reduced charge of
ex
_ Do T=pi(2) 4| 2HS ex 1 (Ba?|?
KTInLpi(2)/ pip]=vi(2)+| 505~ Miks q* = F:(H =1.296. (23)

+q;[P(z2)—D . .
Gl (2) buik] This corresponds to an aqueous solution at room temperature

with a core diameted=4.25A.

—kT; f Acij(|r=r'])Ap;(z")dr’,

1

0 In Fig. 1 we show the results for an 1:1 PM electrolyte
where F5 is the excess free energy functional of a hardthat has been studied by Lozada-Cassou, cf. Fig. 6 of Ref.
sphere system of density, ™ is the excesgapart from [5]. The reduced charge density of each plate oi$
ideal contribution parts of the chemical potentialp;(r) =0.013529 11, the reduced plate widthAgd=1. The re-
=pi(r)—p; and Ac;;(r) are the short-ranged parts of the duced concentration of anions and cations fisd®
direct correlation functions resulting from Coulombic inter- =0.000 462 4(0.01 M) and 1m* =1.6808. Figure (&) cor-
actions. The most widely used expression to evaluate thesesponds to Fig. ® from Ref.[5]. The solid and dashed
functions is the MSA result, which is of reasonable accuracyines give the results for the counterions and co-ions, respec-
and yields the following analytical expressidris]: tively, obtained from DF theory. For Fig. 1, the HNC/MSA

Ill. RESULTS AND DISCUSSION
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0
vifg" 10="-10

FIG. 2. A plot of the total charge} + o3 on the plates and the
= charge on the inner plate; vs the potentials of the inner and the
- outer plates for the PM. The quantitigs areV*/q*. The reduced
Nas | ) | density of the anions and cations is 0.000 462401 M), L=2d,

60 80 andA=d.

8 profiles, obtained by Lozada-Cassou, are indistinguishable
from those resulting from DF theory; therefore, the
HNC/MSA results are not plotted here. The situation in Fig.
1(b) is similar. Lozada-Cassou has plotted the curve only for
6l L =5.5; we have added the results for a wider pore. Note that
Lozada-Cassou’s definition af(the pore widthis shifted by

L A/2 with respect td_; L= 7+ A/2. Thus, there are almost no
differences between the HNC/MSA and DF approaches for
the case of Figs. (8 and Xb). However, for a narrower
pore, shown in Fig. (£) we see some differences. Here, only
L the profiles of the counterions are shown. The solid lines and
dashed lines give the DF and HNC/MSA results, respec-
2 tively. The differences are more pronounced inside the pore;

M however, they are still small. However, the fact that the con-
L k centration is quite low is to be kept in mind. From our cal-

g(2)
E-
|

i el IR = s culations for hard spheres in a pore, we know that DF theory
L | : | is more accurate than the HNC/MSA approach.
(o) , To summarize the results in Fig. 1, whens sufficiently
large, the profiles inside and outside are almost symmetric
154“ [Fig. 4(a)] and the “local electoneutrality condition” is “al-
most” satisfied. The profile inside the pore of width
=15.5[Fig. 1(b)] is still “almost” the same as the profile
outside; indeed, the profiles for this pore are almost identical
as those folL =50.5[Fig. 1(a)]. Decreasing- results in in-
creasing values of the contact values of the counterions pro-
files with the profile of counterions inside the pore being
- higher than the counterion profile outside the pore. Only for
a very narrow pore do we observe more pronounced differ-
5 L ences between the HNC/MSA and DF profi[€sg. 1(c)].
In Fig. 2, we show plots for the total chargg + o of
the plates and the charge on the inner plate @pés func-
tions of the potentials of the inner and the outer plates for the
———————————— == 0.01 M PM for the geometry of Fig.(&¢). The local electro-
neutrality condition is satisfied along the diagoNg=V,.
) z The interaction force between two pore walls, as defined
by Lozada-Cassou, is

g(2)

L 2
FIG. 1. Density profiles for ions in a 1:1 PM at a concentration f(L)/KT= E pi(z=L—A—d/2)— 2_77 J' dzz pi(2)
of 0.1 M. The charge density on the wall &} =0} € dr2

=0.013529 11.(a) and (b) The solid and dashed lines give the
counterion and co-ion profiles, respectivels) L=50.5; (b) we _ (z=L+A+d/2
have two sets of results far=5.5d and forL=15.5. (c) L=2d E pil )
and only the counterion profiles are plotte@) The solid and 5

dashed curves give the DF and HNC/MSA results, respectively. + m
The wall widthA equalsd. €

fw 023 ()|

L+d/2

] (29)
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FIG. 3. The force between two walls of a slitlike pore vs the i
pore width. The points give the MC results and the curve gives the 200 |-
DF results. In this calculatiod =20d, the charge density is} n
=03 =0.306 666, and the ionic densities air,d3:0.044 894 9(a
concentration of 0.971 M

9,2)

for a 2:2 electrolytd PM). The simulations of Valleaet al. 1001 iy }
[18] were performed for ions in a slit with a very wide wall, i
i.e., there is no “outer world,” and no outer solvent. Thus, in L ﬁ n
our calculations, we used a rather wide wall=20d; the A
charges were; = 03 =0.306 666 and the concentration was
0.971 M (the reduced densities of the anions and cations 0) "o 2 4 8 8 10
werep;d3=0.044 8949, cf. Fig. @) of Ref.[5]. The points z
are the Monte CarléMC) simulation and the solid line give 04 —
the DF results; DF theory gives very satisfactory results. We
have also made calculations for a width af=10d and - -7
found that the 10 and 2@ DF results are virtually identical. -
Both thicknesses correspond to an infinitely thick wall. Ob- 03 e
viously, if A is large enougHinfinite), the local electoneu- .
trality condition is always satisfied, independently of the val- ,
ues of the charge®r potential$ on both plates forming the <7 02 / _--2
wall. In such a case, the third and fourth terms in the last J e
equation are just those for an infinitely wide pore, or for a L
single wall. For the states considereddldnd 2@ are infi- !
nite. Note that Lozada-Cassou’s discussi@ij about the A - 1
“artificial imposition of the local electroneutrality condi-
tion” in the simulations by Valleatet al. and also in some # e 1
earlier DF calculations does not apply to those studies be- ’/’/’,_4/—«"/’1,’9//" 23
cause only a single slit, without an outer solution was used. 0.00 0.02 0.04 0.06
Their model corresponds to the model of Lozada-Cassou, the ) P
model used here, with an infinitely thick wall and local neu-
trality always applies. Returning to Fig. 3, we stress the good £ 4. DF calculations for the PM of the coida) and coun-
agreement with the simulation studies. terion profiles(b) and the adsorption isothernfs. The geometry is

We present some results for a system for whiGh=V, | =2 andA=d. (a) and(b) The ionic reduced densities are 0.052
(where local electroneutrality applieis Fig. 4. Three values for each species. Local electoneutrality conditiong=V, have
of the potentiaV* =qg* (curves labeled)IV* =3q* (curves  been used. For curves 1,2,3, respectively, the values of the potential
labeled 2 andV* =5g* (curves labeled )3 Figures 4a) and  areV*=q*, 3g*, and 5*. The geometry is the same as in Fig.
4(b) give the co-ion and counterion profiles, respectively.1(c). For easier viewingc) the co-ion adsorption isotherm 2 has
The geometry is the same as that for Figc)1The reduced been multiplied by 2 and the co-ion adsorption isotherm 3 has been
densities for the co- and counterions are equal to 0(D62  multiplied by 5.
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the concentration is slightly higher than 1) Mrigure 4c) -
shows the adsorption isotherii =T';d?, T';= fdzp;(2). In

Fig. 4(c) the solid and dashed lines, respectively, give the : o

coion and counterion isotherms. The numbers 1, 2, and 3, 0 "

refer toV*/g* =1, 3, and 5. Note that the isotherms 2 and 3 I oo
e 0.5

for the co-ion(solid lineg have been multiplied by 2 and 5, i |
respectively, for easier viewing. An increase of the potential oo g —--—- 07
leads to an increase of the adsorption of the counterions. In :
contrast, the adsorption of co-ions decreases with increasing
potential. The structure of profiles of the co-ions and coun- — f
terions is rather featureless and is not shown; only one peak
is seen at the two walls. Here the ion concentration is much
higher than that for Fig. (t); however, the differences be-
tween the distribution functions of the counterions inside and
outside are smaller than at low concentrations. This, presum-
ably, is due to the fact that the screening length for the elec-
trostatic interactions decreases as the concentration in-
creases. As a result, the “effective” thickness of the wall
increases with increasing concentration and, for a fixed 6 —
thickness, the electrolytes inside and outside the pore tend to
become independent of each other. |
We now proceed to the results for ions plus the primitive B !
solvent. In Fig. 5 we show the counterion, Figah and I
solvent, Fig. Bb), profiles for the constant charge condition. I
The geometry, charges, and ionic densities are the same as in f
Fig. 1(c) i.e., the reduced charge density of each plate is b
0*=0.013529 11, the reduced plate separatiot\isl=1 R
and L=2d. The reduced concentration of the anions and 4
cations isp;d®=0.000462 4(0.01 M) and 1T* =1.6808,L 1
=2d. The calculations have been carried out at three re- 2 ,
duced solvent densities 0.1, 0.5, and 0.7. In addition, we )

9,2

(z

have also displayed here the curve for zero solvent concen- I ‘\ N
tration[taken from Fig. {c)]. With an increase of the solvent 7\\"/ :\lj"‘l"y T
density we observe the development of a layered structure in N v

the ionic density profiles. At zero and at low solvent densi- 0 \ [ I i
ties, the density profiles exhibit a long-ranged decay, due to ()  © 2 4 6 8 10

the long inverse Debye parameter at low concentrations; the
presence of the solvent “decorates” this decay. At high sol- FIG. 5. Counterior{a) and solventb) density profiles obtained
vent densities, the layered structure inside the pore developsing the SPM. The calculations are for a reduced charge density on
with a second local density peak at the pore center. At theach plate ofr* =0.013 529 11, the reduced plate separation is
highest solvent density, there are several layers outside thed; L=2d. The reduced concentration of anions and cations is
pore. This increase in the layered structure is quite usual ip;d®=0.0004624(0.01 M) and 1T*=1.6808. The solvent re-
liquid-state theory. duced densities are 0, 0.1, 0.5, and @&f;this code is displayed.

Flgures_ 6 and 7 show fufther SPM resul'gs. In Figs. 6 andwall. At low densities, the electrostatic effect dominates
7, respectively, density profiles and adsorption isotherms a

I . . .
plotted. The geometry of the system is the same as in Figgzggﬁs at higher densities, the pressure effect becomes sig-

1(0) and 55 however, in Fig. 7 thg ionic densities are much Figure 7 shows some adsorption isotherms plotted as
higher, p;d°=0.052 (a concentration of the order of 1)M fnctions of the ionic densities. The adsorption isotherms of
The calculations were performed under constant potentialg|yent, Fig. Tc), are plotted vs ionic densities. Increasing
conditions(i.e., the local electroneutrality condition is satis- the ionic densities increases the adsorption of the ions. This
fied. We have set the potential, andV, to beVI=V3 s to be expected; if there are more ions, more will be ad-
=3q*. Four solvent densities have been considered; the lasorbed. Increasing the ionic densities has little effect on the
bels 1, 2, 3, and 4 refer to different solvent densities, see theolvent adsorptions because the ionic density is small com-
caption. Figures @&—6(c) show the counterion, co-ion, and pared to the solvent density. The adsorption of the solvent
solvent profiles, respectively. At low solvent densities, themolecules and of both the counterions and co-ions increases
co-ion profiles show a depletion at the walls, whereas awith increases with increasing solvent density because of the
higher solvent densities, this depletion converts into a maxiincreased “pushing” with increased density.

mum. Increasing the solvent density “pushes” the ions and

solvent molecules against the wall. This is most obvious in IV. SUMMARY

the co-ion profiles because the potential on the wall is acting We have applied DFT to investigate an electrolyte in a
in the opposite direction, pushing the co-ions away from thepore formed by charged walls of varying thickness with the
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(© FIG. 7. Adsorption isotherms of co-ion®), counterions(b),
and solvent moleculeg) for the system with the same geometry

FIG. 6. SPM density profiles of the co-iof@, counterions{_b), and electrostatic potential as in Fig. 6. The isotherms are plotted vs
and the solvent moleculds). The geometry of the system is the ionic densityp;d3, i=1 or 2. The different lines refer to different

same as in Figs.(t) and 5. The calculations performed with con- bulk solvent densities: the numbers 1, 2, 3. and 4 have the same
stant potential boundary condition& =3g*. The ionic densities meaning as in Fig. 6

arep;d®=0.052. The lines labeled 1, 2, 3, and 4 correspond to bulk
reduced solvent densities equal to 0.7, 0.6, 0.4, and 0.1, respec-

tively. When a molecular model of the solvent is introduced, the
L . L I density of the electrolyte can be large. Under such condi-
fluid inside and outside the wall being in equilibrium. We tions, we expect that DFT will be much more accurate than

have studied the profiles and adsorption isotherms both for e sinalet level intearal equations. We have alreadv seen
continuum solvent and a molecular solvent. For the case 0?1 9 9 q ' y

the continuum solvent, the electrolyte is a low density sys IS for uncharged hard spheres in a pfi8]. Of course, as
tem and the DFT results are very similar to those of thevas done in Ref.19], good results can be obtained by using
integral theory of Lozada-Cassou. Both the integral equatio® Pair level integral equation but at a considerable cost in
and DFT results are in gratifyingly good agreement with thecomputational complexity. Previous comparison of DFT
simulation results. with simulations for the case of an infinitely thick charged
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